
International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1540
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Comparative Study and Performance Evaluation of
Formal Specification Language based on Z, B and

VDM Tools

Shrishti Tamrakar, Anubhav Sharma

Abstract— Formal method provides specification, proving and verification of software. It targets the semantics rather than syntax of the
source program and can be used to provide an unambiguous and consistent supplement to natural language. Most of the software is
delivered with some bugs, lack of complete functionality and cost overrun. Formal methods are silver bullet for software industry for solving
these problems. Model based formal methods are those in which the system is specified in terms of state models that is constructed using
mathematical notions such as sets and sequences. There are popularly three model based formal methods- Z, B and VDM (Vienna
Development method). Z notation is used at an abstract level based on set theory and first order predicate logic. B is slightly low-leveland
more focuseson refinement to code rather that just formal specification. VDM uses a group of formal modeling languages, it offers syntax
type checking and proof obligation generation capabilities. This paper compares and contrasts the strengths and weaknesses of the model
oriented formal specification languages- Z, B and VDM based on various factors. It is found that VDM is better tool for formal specification
than Z and B.

Index Terms—Formal methods, Software Engineering, Compiler Specification, verification, proof obligation, Z notation, B notation, VDM.

——————————  ——————————

1 INTRODUCTION
OFTWARE ENGINEERING can be defined as “The system-
atic approach to the event, operation, maintenance and re-

tirement of the software system”. The primary goal of software
engineering is to boost the standard of software product. The
analysis phase of software development involves project planning
and software requirement definition. The software requirement
specification is a technical specification of requirements for the
software product. The goal of software requirement specification
definition is to completely and consistently specify the technical
requirements for the software product in a concise and unambig-
uous manner, using formal notations as appropriate. The software
requirement specifications based on the system definition. The
requirement specification will state that the ’what’ of the soft-
ware product without implying ‘how’. For Software formal speci-
fication, formal methods are used which are mathematical-based
techniques used for specification, proving and verification of
software systems [1]. The process of formal verification means
that applying these approaches to verify the properties making
certain correctness of a system. Formal verification of software
system targets the computer program wherever linguistics of the
language provides precise aiming to the program analyzed. For-
mal specification can be used to provide an unambiguous and
consistent supplement to natural language descriptions and can be
rigorously validated and verified leading to the early detection of
specification errors [2].

Various researches have been made in different fields by using
Z [17], B [11] and VDM [16] formal methods. Almeida et.al [7]
in 1992 transformed a semi formal specification to VDM. De-
scriptions of the requirements of a software system written in an
unconstrained natural language are considered to be informal.

Informal descriptions are known to have the potential to contain
ambiguities, partial descriptions, inconsistencies, and incom-
pleteness and poor ordering of requirements, Specifications writ-
ten in VDM like language are considered formal. In between
these two ends they recognized several techniques for semi-
formal specifications. In this paper they proposed a technique for
semi-formal specification.

Ledru [9] in 1993 developed a reactive system in a VDM
framework. This paper studied detailed development of reac-
tive systems, using an extension of VDM. The extension al-
lows specification and proof of behavioral aspects to be ex-
pressed in the VDM framework. This is achieved by using
traces of the input/output activities and introducing the no-
tion of external entities whose behavior is described by a state
machine. The major objective of this work is to improve un-
derstanding of the practical implications of the specification,
design, and symbolic validation of machine-checked reactive
systems.

Ponsard et.al [20] in 2006 analyzed formal requirement
models to Formal Specifications in B. They analyzed that the
development of critical systems requires a high assurance pro-
cess from requirements to the running code. Formal methods,
such as B, now provide industry-strength tools to develop
abstract models refine them in more concrete models and fi-
nally turn them into code. A major remaining weakness in the
development chain is the gap between textual or semi-formal
requirements and formal models. In this paper, they explore
how to cope with this problem using a goal-oriented approach
to elaborate a pertinent model, including regulation model-
ling, and turn it into a high quality abstract formal specifica-
tion.

S IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1541
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

Dantas [11] in 2009 presented verified compilation and the B
method: A Proposal and a first appraisal. This paper investigates
the application of the B method beyond the classical algorithmic
level provided by the B0 sub-language, and presents refinements
of B models at a level of precision equivalent to assembly lan-
guage. It claim and justify that this extension provides a more
reliable software development process as it bypasses two of the
less trustable steps in the application of the B method : code syn-
thesis and compilation. The results presented in this paper have a
value as a proof of concept and may be used as a basis to estab-
lish an agenda for the development of an approach to build veri-
fying compilers based on the B method.

Zafar et.al [3] in 2011 worked in Transformation of class dia-
grams into Formal Specification. He says that requirement analy-
sis and design specification is a serious issue in software engi-
neering because of semantics involved in the transformation of
real world problems to computational models. Unified Modeling
language (UML) has been accepted as a standard for design and
development of object oriented systems. UML has a lack of nota-
tions for description of a complete functional system and its se-
mantics is still semi-formal allowing ambiguities at desing level.
Formal methods involve much mathematics. Therefore, a strong
linkage of UML and formal methods is needed to overcome the
above issues. In this paper, an integration of UML and Z notation
is defined for class diagrams considering both the syntax and
semantics at an abstract level of specification.

Buragga et.al [4] in 2011 analyzed formal parsing of CFG
(Context-Free grammar) using Left most Derivations. Formal
approaches are useful to verify the properties of software and
hardware systems. Formal verification of a software system tar-
gets the source program where semantics of a language has more
meanings than its syntax. Therefore, program verification does
not give guarantee the generated executed source code is correct
as described in the source program. This is because the compiler
may lead to an incorrect target program due to bugs in the com-
piler itself. It means verification of compiler is more important
than verification of a source program to be compiled. In this pa-
per, context-free grammar is linked with Z notation to be useful
in the verification of a part of compiler. Firstly they defined the
grammar, then language derivation procedure is described using
the left most derivations. Next, verification of a given language is
described by recursive procedures. The ambiguity of a language
is checked as a part of the parsing analysis. By reading all these
literatures it is found that B and Z notations have been used most-
ly, but the same work can be done through VDM which will give
better output and easy to be work with.

The paper is organized as follows: Section II provides the
problem definition of formal specifications like in Software in-
dustry where the problem lies in specifying the software and pros
and cons of formal specification. Section III presents the applica-
tions and descriptions of each formal method-Z, B and VDM.
Section IV reports the result of the survey of all the three formal
methods. Finally, Section V draws preliminary conclusions on
this survey and an agenda for future research.

2 PROBLEM DEFINITION
In software development, there's a tangle that development price
will increase by back track once bugs that square measure en-
closed within the section of demand definition square measure
found within the when phases. As a good technique to unravel the
matter, there is a technique with a proper specification language
for demand. A formal specification language can describe the
functional requirements exactly with mathematical in and verifies
the specification to executable program with stepwise refinement.
At stepwise refinement step, it will be found bugs by proof of the
specification. [3]

Fig.1 Formal Specification
 Fig.1 depicts where the Formal Specification lies in the
Software Development Life Cycle. It illustrates that between the
User requirement Definition and the High level design there ex-
ists the Formal Specification. Its advantage is that it increases the
contractor involvement rather than the client involvement.

Formal strategies haven't become thought software system de-
velopment techniques as was once expected. Other computer
code engineering techniques are made at increasing system quali-
ty. Hence, the necessity for formal ways has been reduced. Mar-
ket changes are created time-to-time instead of computer code
with an occasional error count the key issue. Formal ways don't
scale back time to promote. The scope of formal ways is restrict-
ed. They’re not similar temperament to specifying and analyzing
user interfaces and user interaction. Formal strategies square
measure arduous to proportion to massive systems. Formal speci-
fication involves additional effort within the early phases of
software development. This reduces needs errors because it forc-
es a close analysis of the need. Unity and inconsistencies may be
discovered and resolved. Hence, savings may be created as quan-
tity of work on owing to demand issues is reduced.

3 FORMAL SPECIFICATION TOOLS- Z, B AND VDM
1. The Z notation for specifying and planning package has
evolved over the simplest a part of a decade, and it is current-
ly doable to spot a regular set of notations that, though easy,
capture the essential options of the strategy. This causes that
junction rectifier to even this modest step towards standardi-
zation of Z. The first of those is that the growing trend to-
wards pc helps within the writing and manipulation of Z spec-
ifications. Whereas the specifier’s tools amounted to very little
quite word-processing facilities, they had enough inherent

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1542
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

flexibility to make small differences in notation unimportant.
But tools square measure currently being engineered that re-
lies upon grammar analysis and to some extent on linguistics
analysis, of specifications. For these tools – syntax checkers,
structure editors, type checkers, and many more – to be useful
and reliable, there must be agreement on the grammatical
rules of the language they support. Nazir Ahmad Zafar and
Fawaz Alsaade [2] has researched for “Syntax-tree Regular
Expression Based DFA Formal Construction”. They said that –
Compiler’s functionality is translation of computer program in
source language to a machine code. Because of its size and
complexity compiler construction is an advanced research
area. Higher-level languages are usually complex which in-
creases the level of abstraction. Due to all these reasons, de-
sign and construction of error-free compiler became a chal-
lenge for which verification of compiler must be done using
one of the formal specification languages. Here in this applica-
tion, Z notation has been used to formally specify a compiler.
The sequence of labor done is as follows- 1st syntax tree is rep-
resented supported the increased regular expression. Then
formal description of vital operators, checking null ability and
computing initial and last positions of internal nodes of the
tree is delineated. Then the transition diagram is represented
from the follow positions and reborn into settled finite autom-
ata by shaping a relationship among syntax tree, transition
diagram and DFA. The model analysis is provided exploita-
tion Z/Eves toolset.

2. The B-Method is a mathematical method that belongs to the
“model oriented" approach to software construction. The
method is founded on set theory in a way which is made as
solid as possible by reconstructing the original Ermelo set the-
ory within the method itself. The method is based on a series
of embedded notations: the logical notation, the basic set nota-
tion, the relational notation, the mathematical object notation,
the generalised substitution notation, and, at the highest level,
that of the Abstract Machine. The notation employed by the B-
Method depends on associate degree extension to Dijkstra`s
calculus. The extension enables specification of operations in
terms of preconditions and post conditions, and permits ob-
ject-oriented styles. Bartira Dantas [11] presented “verified
compilation and B Method: A Proposal and a first Appraisal”.
In this paper B-method has been investigated on the far side
the algorithmic level and additionally presents refinements of
B models at level of preciseness reminiscent of programming
language. This extension provides additional reliability to-
wards computer code development by prying 2 steps: code
synthesis and compilation. The result has been given within
the kind of proof of idea and might be wont to build valedic-
tory compilers primarily based in B methodology.

3. The Vienna Development Method is a mature formal method
whose origins go back to the IBM Vienna Laboratory in the
1970s. It is a formal method for the description and develop-
ment of computer systems. Its formal descriptions (or 'specifi-
cations') use mathematical notation to provide a precise state-
ment of the intended function of a system. Such descriptions
are built in terms of models of an underlying state with a col-
lection of operations which are specified by pre- and post-

conditions. VDM designs are guided by a number of proof
obligations whose discharge establishes the correctness of de-
sign by either data rectification or operation decomposition.
Thus it can be seen that VDM addresses the stages of devel-
opment from specification through to code. From the wide
variety of tools available it single out the Overture Automatic
Proof System (APS) and the VDMTools for type checking, in-
terpretation and code generation. Peter Gorm Larsen [10] pre-
sented “Recent industrial Applications of VDM in Japan”. He
analyzed that there is an industrial use of VDM in Japan since
the acquisition of VDMTools by CSK systems. This acquisition
followed a very successful application of VDM++ in the de-
velopment of two subsystems of the Trade one back office sys-
tem for securities trading. FeliCa Networks also applied
VDM++ in the development of a new generation IC chip for
use as an electronic purse which can be embedded in a cellular
telephone.

4 RESULT AND DISCUSSION
The three formal methods discussed in section III – Z, B and

VDM are the most powerful tool which can be used for ana-
lyzing the formal specification in respective notations. There
does not exist any computer tool which may guarantee about
complete correctness of a computer model. Therefore, even the
specification is written using any of the formal languages it
contain potential hazardous or errors. It means art of writing a
formal specification never assures that the developed system
is consistent, correct and complete. On the other hand, if the
specification is checked and analyzed with the computer tool
support it certainly increases the confidence over the system to
be developed by identifying the potential errors, if exist, in
syntax and semantics of the formal description.
Comparison of Z, B and VDM:
Comparison

Factor
Z B VDM

Formal
Method
Style

Model-
oriented

Model-
oriented

Model-
oriented

Mathemati-
cal basis

Set theory
First order
predicate
calculus

Set theory
First order
predicate
calculus

Set theory
First order
predicate
calculus

Appearance
Difference

Keyword
oriented

Boxes or
schemas

Keyword
oriented

Structuring Abstract ma-
chine nota-
tion

Schema
calculus
which al-
lows vari-
ous sche-
mas to be
combined to
form new
schemas

None

Specifica-
tion of state
change

None Before:
undecorated
variables

Before:
Hooked vari-
ables

IJSER

http://www.ijser.org/

International Journal of Scientific & Engineering Research, Volume 6, Issue 9, September-2015 1543
ISSN 2229-5518

IJSER © 2015
http://www.ijser.org

After:
primed var-
iables

After: un-
hooked vari-
ables

Identifica-
tion of in-
puts and
outputs

Input and
output pa-
rameters are
given by an
operation
header: Out-
put  Opera-
tion name
(Inputs)

Inputs: var-
iable names
ending in
“?”
Outputs:
variable
names end-
ing in “!”

No explicit
way of speci-
fying

Concurren-
cy

No support
for concur-
rency control

No support
for concur-
rency con-
trol

Provide sup-
port for con-
currency con-
trol using
VDM++

Object ori-
ented con-
cept

Support ob-
ject oriented
concepts such
as polymor-
phism, inher-
itance and
encapsulation
using object
Z.

No support
for object
oriented
concept

Support ob-
ject oriented
concepts such
as polymor-
phism, inher-
itance and
encapsulation
using
VDM++.

Tool sup-
port

Z Word
Z/Eves
Fastest

AtlierB
ProB

SpecBox
Overture
VDM tools

Code gener-
ation

Software
requirement
specification
cannot be
automatically
converted
into computer
source code.

Software
requirement
specifica-
tion can be
automatical-
ly converted
into com-
puter source
code.

Software
requirement
specification
can be auto-
matically
converted
into computer
source code.

Table.1 Comparison of Z, B and VDM

5 CONCLUSION AND FUTURE WORK
Though Z, B and VDM are model based formal specification

languages used for specifying user’s requirements in mathe-
matical language that can be proved, verified and tested un-
ambiguously. While the journey of all the three languages
starts at the requirements specification phase of the software
development life cycle (SDLC) model, but their path divides
after this phase. Z works on high level abstraction of a system
and provides a strong base for system designing and then test-
ing it. However, B models the system in an abstract machine
notation that can be used further to design system, generate its
code and then refine and test the same. VDM is used to prove
the equivalence of programming language concepts. They all
do not differ radically from one another, but at some factors
they differ a lot.

By seeing the different characteristics of all the three meth-

ods, it can be concluded that as Z and B has already been ap-
plied to compiler’s specification but still remain a challenge
for error-free compiler. If this application is to be put through
VDM, then this can be helpful for providing error-free compil-
er better than the previous work done.

REFERENCES
[1] Dr.Arvinder Kaur, Ms Samridhi Gulati, and Ms.Sarita Singh, “Analy-

sis of three formal methods-Z, B and VDM” , ISSN:2278-0181vol. 1,
June 2012.

[2] Nazir Ahmad Zafar and Fawaz Alsaade, “Syntax-tree regular expres-
sion based DFA formal construction”, IIM,2012,4,138-146.

[3] Nazir Ahmad Zafar and Fahad Alhumaidan, “Transformation of
Class Diagrams into Formal specification”, IJCSNS,Vol.11 No.5,May
2011

[4] Khalid A.Buragga and Nazir Ahmad Zafar, “Formal Parsing Analysis of
context-free grammer using left most derivations”, IARIA, 2011.

[5] Nazir Ahmad Zafar, “LR(K) parser Construction using Bottom-up
formal analysis”, JSEA, 2012, 5, 21-28.

[6] Nazir Ahmad Zafar, “Automatic Construction of formal Syntax tree
based on regular expressions”, 2012.

[7] Juliette D’Almeida, R.Achuthan, T.radahkrishnan,V.S.Alagar, ”Transfor-
mation of a semi-formal specification to VDM”, IEEE, 1992.

[8] Peter Gorm Larsen, kenneth Lausdahl, Nick Battle, “Combinatorial
Testing for VDM”, IEEE, 2010.

[9] Y.Ledru, “Developing reactive systems in a VDM framework”, Elsevier,
1993, 51-71.

[10] Peter Gorm Larsen, “Recent Industrial Applications of VDM in Ja-
pan”.

[11] Bartira Dantas, “Verified Compilation and the B method: A Proposal
and a first Appraisal”, Elsevier, 2009,79-96.

[12] Daniel Plagge and Michael Leuschel, “Validation B, Z and TLA+
using ProB and Kodkod”, Technical Report, March 2012, Rev: 8536.

[13] Michael Leuschel and David Schneiderm, “Towards B as a high-level con-
straint Modelling Language Solving the jobs puzzle challenge”.

[14] John Witulski and Michael Leuschel, “Checking computations of formal
method tools - A secondary tool chain for ProB”.

[15] Carlos A.L.Nunes and Ana C.R.Pava, ”Automatic Generation of GUI from
VDM++ specification”, ICSEA 2011,pp.399-404, ISSN:2308-4235, Barce-
lona, Spain, October 23,2011 to October 29,2011.

[16] Juan C.Bicarregui, JohnS.Fitz Gerald, Peter A.Lindsay, Richard Moore,
Brian Ritchie, “Proof in VDM : A Practitioner’s Guide”, 1st ed. Springer
1994. Available at http://overturetool.org/publications/books/proof-in-
vdm/ProofinVDM.pdf

[17] J.M.Spivey, ”The Z-notation-A Reference Manual”, 2nd Edition, 1998.
Available at http://spivey.oriel.ox.ac.uk/~mike/zrm/zrm.pdf

[18] Tony Hoare, “The verifying compiler- A grand challenge for computing
research”, Volume 50, Issue 1, Pages 63-69, ACM New York, USA, Jan
2003. Available at http://www.cs.ox.ac.uk/files/6187/Grand.pdf

[19] Andreas Muller, “VDM-Vienna Development Method”, Bachelor thesis in
“Formal methods in software Engineering”, Johannes Kepler University
Linz, April 20,2009. Available at
https://www.yumpu.com/en/document/view/25785430/vdm-a-the-vienna-
development-method-citeseerx

[20] Christophe Ponsard and Emmanuel Dieul, “From Requirements Models to
Formal Specifications in B”, available at http://ceur-ws.org/Vol-
241/paper10.pdf

[21] D J Andrews and D C Ince, “Transformational data refinement and VDM”,
Elsevier 1995.

IJSER

http://www.ijser.org/
http://ceur-ws.org/Vol-241/paper10.pdf
http://ceur-ws.org/Vol-241/paper10.pdf

	1 Introduction
	2 Problem definition
	3 formal specification tools- z, b and vdm
	4 result and discussion
	5 conclusion and future work
	References

